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Abstract

Background: Accurate diagnostic and prognostic predictions of venous thromboembolism 

(VTE) are crucial for VTE management. Artificial intelligence (AI) enables autonomous 

identification of the most predictive patterns from large complex data. Although evidence 

regarding its performance in VTE prediction is emerging, a comprehensive analysis of 

performance is lacking.

Aims: To systematically review the performance of AI in the diagnosis and prediction of VTE 

and compare it to clinical risk assessment models (RAMs) or logistic regression models.

Methods: A systematic literature search was performed using PubMed, MEDLINE, EMBASE, 

and Web of Science from inception to April 20, 2021. Search terms included “artificial 

intelligence” and “venous thromboembolism.” Eligible criteria were original studies evaluating 

AI in the prediction of VTE in adults and reporting one of the following outcomes: sensitivity, 

specificity, positive predictive value, negative predictive value, or area under receiver operating 

curve (AUC). Risks of bias were assessed using the PROBAST tool. Unpaired t-test was 

performed to compare the mean AUC from AI versus conventional methods (RAMs or logistic 

regression models).

Results: A total of 20 studies were included. Number of participants ranged from 31 to 

111 888. The AI-based models included artificial neural network (six studies), support vector 

machines (four studies), Bayesian methods (one study), super learner ensemble (one study), 

genetic programming (one study), unspecified machine learning models (two studies), and 

multiple machine learning models (five studies). Twelve studies (60%) had both training and 

testing cohorts. Among 14 studies (70%) where AUCs were reported, the mean AUC for AI 

versus conventional methods were 0.79 (95% CI: 0.74–0.85) versus 0.61 (95% CI: 0.54–0.68), 

respectively (p < .001). However, the good to excellent discriminative performance of AI methods 

is unlikely to be replicated when used in clinical practice, because most studies had high risk of 

bias due to missing data handling and outcome determination.

Conclusion: The use of AI appears to improve the accuracy of diagnostic and prognostic 

prediction of VTE over conventional risk models; however, there was a high risk of bias observed 

across studies. Future studies should focus on transparent reporting, external validation, and 

clinical application of these models.
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1 | INTRODUCTION

Venous thromboembolism (VTE) is a common vascular disease that is associated with 

significant morbidity and mortality.1,2 In patients presenting with suspected VTE, accurate 

and timely diagnosis is a prerequisite for appropriate medical intervention to prevent 

debilitating outcomes. In addition, accurate prediction of future VTE can facilitate the risk–
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benefit consideration and allow for selection of high-risk patients who are most likely to 

benefit from pharmacological thromboprophylaxis.

A number of clinical risk prediction models have been developed for the diagnosis 

and prognostic prediction of VTE in various settings.3–6 The reported performance of 

these models vary among population, baseline risks of VTE, and predictors included in 

the models. Traditionally, clinical risk prediction models are derived using a regression-

based analysis, such as logistic regression and Cox regression, which result in several 

shortcomings including the limitation to highly structured and curated predictor variables. 

Artificial intelligence (AI) and machine learning modeling approaches have become 

increasingly popular as alternatives for the development of prediction models. While these 

approaches provide theoretical advantages, including more computational flexibility and 

consistency,7 they remain susceptible to bias and are often hard to clinically interpret which 

limits their application. Moreover, the predictive performance of these AI-based models has 

not been consistently reported to perform better than conventional models.

Evidence for AI or machine learning-based models in the diagnosis and prognostic 

prediction of VTE has been accumulating over the past few years. This study aims to 

systematically review the performance of AI or machine learning-based models in the 

diagnosis and prediction of VTE and compare their performance with conventional clinical 

risk assessment models (RAMs) or regression-based models.

2 | METHODS

The study protocol is registered on PROSPERO (CRD248869). Preferred Reporting Items 

for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed.

2.1. | Data sources and search strategies

PubMed, MEDLINE, EMBASE, and Web of Science from inception to April 20, 2021 

were queried. The following search terms were used: (“artificial intelligence” OR “machine 

learning” OR “natural language processing”) AND (“venous thromboembolism” OR 

“deep vein thrombosis” OR “venous thrombosis” OR “pulmonary embolism”). Language 

restriction to English was applied. Result from the detailed searches are presented in the 

Supporting Information Methods.

2.2. | Study selection

The eligible studies were original prospective or retrospective studies evaluating the 

performance of AI-based models to diagnose or predict occurrence of VTE in adults, defined 

as age ≥ 18 years of age. Diagnostic predictions models predict the probability of VTE 

in the presenting population, whereas prognostic prediction models predict the probability 

of developing VTE in the future. Studies were required to report one of the following 

outcomes: sensitivity, specificity, positive predictive value, negative predictive value, or area 

under receiver operating curve (AUC). Non-original articles (such as reviews, commentaries, 

or guidelines) and duplicated studies were excluded. Studies assessing natural language 

processing (NLP) accuracy to detect VTE from radiological reports or medical records were 

not included.
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2.3 | Data extraction

Two authors (Thita Chiasakul and Barbara D. Lam) independently extracted data from 

included studies in duplicate using a standardized evidence table based on CHARMS 

(critical appraisal and data extraction for systematic reviews of prediction modeling studies) 

checklist.8 Discrepancies were resolved by consensus or a third reviewer (Rushad Patell) 

when necessary. The primary outcome was the diagnostic or prognostic performance of 

AI-based clinical prediction models in VTE. The following data were collected: author, 

year of publication, study design, study population, inclusion and exclusion criteria, number 

of participants, AI model, the outcome being predicted, internal and external validation 

method, discrimination and calibration performance measure, and percentage of missing 

data.

2.4 | Risk of bias assessment

Methodological quality assessment was performed independently by two authors (Thita 

Chiasakul and Barbara D Lam) using the PROBAST (Prediction model Risk of Bias 

Assessment Tool).9,10 The tool consisted of four key domains: participants, predictors, 

outcomes, and analysis. Studies were categorized by their risk of bias as having low, high, 

or unclear risk of bias. Any differences in quality rating were resolved by consensus or 

adjudication by a third reviewer (Rushad Patell).

2.5 | Statistical analysis

Due to the substantial heterogeneity in terms of study population, types of data sources, 

models, and outcomes of interest that were observed among the included studies, meta-

analyses for the point estimates for the overall model performance were not performed. 

Narrative summary and descriptive statistics were used to describe the characteristics of 

included studies and the model’s performance measures. Unpaired t-test was performed to 

compare the mean AUC from AI versus conventional methods (RAMs or logistic regression 

models). In studies reporting multiple models, the models with highest reported AUC were 

selected for analysis.

3 | RESULTS

3.1 | Study identification

The study was reported in accordance with the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) and TRIPOD guidelines. The PRISMA flow 

diagram is shown in Figure 1. A total of 745 unique records were retrieved from the 

literature search. After screening by title and abstract, 656 records were excluded. The 

remaining 89 references underwent full-text review, 20 of which met eligibility criteria and 

were included in the systematic review. Fourteen studies provided adequate data for a pooled 

analysis. Collectively, these 14 studies included 249 111 patients.

3.2 | Study and patient characteristics of included studies

The characteristics of included studies are summarized in Tables 1 and 2. Of the 20 

included studies, 13 were of prognostic prediction models11–23 and 7 were of diagnostic 
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prediction models.24–30 Among the 13 prognostic prediction models studies, the outcome 

being predicted were first VTE (8 studies), post-operative VTE (4 studies), and recurrent 

VTE (1 study). Among the seven diagnostic prediction model studies, the conditions being 

predicted were pulmonary embolism (PE; four studies), deep vein thrombosis (DVT; one 

study), arterial and venous thromboembolism (one study), and portal vein thrombosis (one 

study). The publication years ranged from 2004 to 2021. Studies that were included were 

conducted in the United States (10 studies), Europe (6 studies), Asia (3 studies), and South 

America (1 study). All studies were retrospective, with only one study reporting results 

from prospective validation.16 The sample size ranged from 31 to 111 888 patients. The 

study population included patients presenting with suspected VTE or first VTE, ambulatory 

cancer patients, hospitalized medical patients, patients with anti-phospholipid syndrome, and 

post-operative patients. Data sources were mostly medical records obtained from single or 

multiple institutions, whereas two studies utilized data from an administrative database.14,23 

Methods of VTE outcome assessment were described in seven studies (35%); two studies 

used ICD codes and five studies used standard imaging such as duplex ultrasound and 

computed tomography pulmonary angiography.

3.3 | Models of AI

The AI-based models included artificial neural network (six studies), support vector 

machines (four studies), super learner ensemble (one study), Bayesian methods (one study), 

genetic programming (one study), unspecified machine learning models (two studies), and 

multiple machine learning models (including random forest, gradient boosting decision 

tree, logistic regression, support vector machine, K-nearest neighbor, and Naive-Bayes; 

five studies). Twelve studies (60%) reported both training and testing cohorts, with the 

proportion of testing cohorts ranging from 10%–30%. Predictor variables included clinical 

and laboratory variables that varied among studies, ranging from 3 to 68 variables. Of the 20 

studies included, internal validation was reported in 11 studies (55%) and external validation 

was performed in 2 studies (10%). Methods of internal validation included bootstrapping, 

cross-validation, and data splitting. Missing values were excluded in five studies, whereas 

two studies utilized the predictive value imputation method by replacing missing values with 

the average of the attribute observed in the training set. The remaining 13 studies (65%) did 

not include their approach to missing data.

3.4 | Performance measures

The model discrimination and calibration performance measures are summarized in Table 

1. Discrimination measures, reported as AUCs or c-statistics, were described in 14 studies 

(70%). Among these studies, confidence intervals were reported in only three studies. The 

mean AUC for AI-based models compared to conventional models (including previously 

published clinical prediction models and logistic regression models) were 0.79 (95% CI: 

0.74–0.85) vs. 0.61 (95% CI: 0.54–0.68), respectively (p < .001, Figure 2). Calibration 

performance measures investigated using calibration plots and the Hosmer–Lemeshow test 

were reported in only three studies.
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3.5 | Risk of bias assessment

Summary of the risk of bias assessment are shown in Figure 3. Most studies had high or 

unclear risk of bias according to the PROBAST tool. The common sources of bias among 

the included studies were absence of detailed descriptions of participant inclusion and 

exclusion criteria, lack of reporting on the definitions, methods of assessment, and blinding 

procedures for model predictors and outcome ascertainment, and lack of report on missing 

data handling and details of model calibration.

4 | DISCUSSION

In this systematic review, we identified 20 studies that evaluated the performance of AI-

based prediction models in the diagnostic and prognostic prediction of VTE. The use of 

AI appears to provide superior discrimination performance than the conventional regression-

based models; however, there were a number of shortcomings identified.

The included studies were heterogenous; each model was aimed to predict VTE in 

different medical contexts, such as predicting first VTE in an outpatient or inpatient 

settings, predicting recurrence after the first VTE, or predicting VTE after different surgical 

procedures. Thus, we did not summarize and compare the model performance across studies. 

Moreover, many studies fell short in adequately describing the inclusion and exclusion 

criteria of the study population. These details are paramount to understand the clinical utility 

and appropriate application of prediction models.

Concerning issues in the modeling process were noticeable among the included studies. 

The currently available studies of AI-based models mostly have high risks of bias. 

Essential elements of the model development, validation, and evaluation method were often 

omitted from the reports, hindering the appraisal of their performance, applicability, and 

reproducibility. In some studies,11,17,26,27 sample sizes were limited, which may have led to 

overfitting of models. The time span of prediction, defined as the period between predictor 

assessment and outcomes, was not described in most studies, which also limits the clinical 

applicability. Moreover, less than half of the studies reported the proportion of missing data 

and how they were handled. Missing data introduces bias in the model development and 

affects the validity of the model’s predictive performance.31

Although most of the included studies reported good to excellent discriminative performance 

(AUC ranging from 0.7 to 0.9), this accomplishment is unlikely to be replicated when used 

in clinical practice, owing to the studies’ high risk of bias. Of the 20 included studies, only 

2 studies performed external validation,16,24 which showed that the model’s performance in 

the validation cohort was inferior to the derivation cohort. In addition, our review observed 

significant gaps in the reporting of model’s calibration performance (presented as calibration 

plot or Hosmer–Lemeshow test), which evaluates the ability of the model to accurately 

estimate the risk of the outcome. Ideally, reliable prediction models should show strong 

agreement between the predicted outcomes and the observed outcomes.32 A model can have 

excellent discrimination but poor calibration, over- or under-estimating the individual’s risk 

of outcome.33 The use of such a model would be misleading and can be detrimental in 

clinical practice. Performing independent external validation and a rigorous evaluation of 
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AI-based model performance is an important step before actual clinical implementation. One 

advantage of the AI-based prediction models is their ability to undergo transfer learning, 

a machine learning method whereby a pre-trained model can be adapted to different 

populations and data set, making it more accurate and cost-effective.34

Of the 20 included studies, 8 studies reported the comparative performance of AI-based 

models to conventional models in the same data set.13,14,18,20,22,24,25,29 In all eight 

studies, the intra-study comparison showed superior discriminatory performance of AI-based 

models. We reported that the mean AUC of AI-based models was higher than that of 

conventional models. Although this finding was not intended to be interpreted as overall 

summarization of the performance of individual models, it demonstrates the potential for 

integration of AI in the development of risk prediction models in VTE. A recent systematic 

review and meta-analysis of AI approaches, including NLP, in the prediction and diagnosis 

of VTE reported pooled sensitivity of 0.87 and pooled specificity of 0.96 in the testing data 

set based on five studies.35 The heterogeneity was very high in this study (I2 ranging from 

93.6% to 99.4%), which was expected when combining studies with marked variation in 

clinical settings and objectives. Our review excluded NLP studies, due to their differences in 

purpose and characteristics from the machine learning models. In another systematic review 

comparing the performance of machine learning to logistic regression in 71 studies across 

various clinical domains, the AUCs of machine learning models were higher than those of 

logistic regression only in studies with high risk of bias.36

Despite the endorsement of the TRIPOD checklist,37 inadequate reporting of published risk 

prediction models have been observed in both AI- and non-AI-based clinical prediction 

models.36,38,39 Similar to the studies included in our analysis, common elements that were 

often omitted were the description of participants, sample size justification, definition of 

predictors and outcomes, missing data handling, calibration performances, and external 

validation. AI approaches in medicine include the more auditable algorithms, which are 

typically more interpretable and rely heavily on human annotation to accurately label 

features and outputs, and the more “black box” models, such as neural networks, which 

can be highly computationally complex and differ significantly from statistical techniques. 

These models often rely on nonlinear relationships between predictors and outcomes.40 In 

depth comparisons of these methodologies and justifications of the approaches are important 

details that were broadly lacking in studies included in this systematic review. This should 

be a focus in future studies for clinical applications of AI including VTE management. AI 

algorithms, particularly in supervised learning for prediction modeling, are vulnerable to 

biases of their human designers.41 These biases can be challenging to identify or rectify, and 

can be compounded by biases present in the datasets or the algorithm itself. It is important to 

be aware of these potential biases, as the use of AI becomes increasingly common, in order 

to improve the efficiency and accessibility of healthcare delivery.42

Aside from the model’s performance, the clinical applicability of an AI-based prediction 

model is dependent upon many other important factors, such as the availability of the 

model’s algorithm and software, the ability for model updating, security assurance, and the 

integration to clinical workflow.43 There is an ongoing debate regarding the capacity of AI-

generated algorithms to be safeguarded under intellectual property laws. This controversy 

Chiasakul et al. Page 7

Eur J Haematol. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



could potentially hinder developers from sharing their models with the public.44 Moreover, 

after implementation, the impact of AI-based prediction models on clinical outcomes 

and decision making need continued evaluation. Thrombotic disorders and anticoagulation 

are the most commonly assessed domains in studies assessing electronic health record 

integration and implementation of clinical prediction models, which has shown promising 

impact on clinical outcomes.45 A retrospective study evaluating the influence of AI-based 

clinical decision support system reported a 19% reduction in the rate of hospital-acquired 

VTE after implementation. Unfortunately, the details of model development were not 

reported in this study.46 Moving forward, such implementation data are crucial in order 

to assess the applicability and impact of AI-based clinical prediction models in clinical care.

Despite the limitations, our review serves to provide a comprehensive overview of current 

literature evaluating the use of AI in the prediction models in the area of VTE and highlights 

the apparent inadequacy in the reporting of current studies. It is foreseeable that there will be 

an exponential increase in the number of reports on AI-based VTE prediction models in the 

upcoming decade. Our review identifies the current methodological and reporting challenges 

and issues at this early stage, such that future studies can take caution to improve reporting 

transparency and appraisability, ultimately leading to improved overall quality of evidence in 

this area.

5 | CONCLUSION

The use of AI-based models for diagnosis and prediction of VTE are increasing and might 

potentially be an improvement compared to existing models. Adherence to the standard 

reporting guidelines for clinical prediction models can increase the quality of future studies 

evaluating AI-based prediction models in VTE. At this stage of evidence, it is premature 

to incorporate AI-based models in routine clinical practice. Implementation of these models 

require consideration of other important factors including ethical and legal compliance, 

transparency, integration to clinical workflows, and continuous evaluation. Future studies 

should focus on transparent reporting, external validation, and clinical application of these 

models.
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Novelty Statements

What is the new aspect of your work?

This is a systematic review of literature evaluating the performance of artificial 

intelligence (AI)-based models in the diagnostic and prognostic prediction of venous 

thromboembolism (VTE).

What is the central finding of your work?

Although AI-based models may potentially have superior performance to conventional 

models, current studies have high risks of bias and inadequate reporting of methods.

What is (or could be) the specific clinical relevance of your work?

Before the widespread clinical implementation of AI-based models for the prediction of 

VTE risk, clinicians should be aware of the potential bias present in the current literature 

and their applicability.
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FIGURE 1. 
PRISMA flow diagram.
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FIGURE 2. 
Scatter plot comparing the area under receiver operating curve (AUC) in AI-based models 

compared to previous clinical risk assessment models (RAMs)/logistic regression models.
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FIGURE 3. 
Risk of bias assessment using PROBAST tool. +, low risk of bias;?, unclear risk of bias −, 

high risk of bias.
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