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Abstract

Background: Accurate diagnostic and prognostic predictions of venous thromboembolism
(VTE) are crucial for VTE management. Artificial intelligence (Al) enables autonomous
identification of the most predictive patterns from large complex data. Although evidence
regarding its performance in VTE prediction is emerging, a comprehensive analysis of
performance is lacking.

Aims: To systematically review the performance of Al in the diagnosis and prediction of VTE
and compare it to clinical risk assessment models (RAMS) or logistic regression models.

Methods: A systematic literature search was performed using PubMed, MEDLINE, EMBASE,
and Web of Science from inception to April 20, 2021. Search terms included “artificial
intelligence” and “venous thromboembolism.” Eligible criteria were original studies evaluating
Al in the prediction of VTE in adults and reporting one of the following outcomes: sensitivity,
specificity, positive predictive value, negative predictive value, or area under receiver operating
curve (AUC). Risks of bias were assessed using the PROBAST tool. Unpaired £test was
performed to compare the mean AUC from Al versus conventional methods (RAMs or logistic
regression models).

Results: A total of 20 studies were included. Number of participants ranged from 31 to

111 888. The Al-based models included artificial neural network (six studies), support vector
machines (four studies), Bayesian methods (one study), super learner ensemble (one study),
genetic programming (one study), unspecified machine learning models (two studies), and
multiple machine learning models (five studies). Twelve studies (60%) had both training and
testing cohorts. Among 14 studies (70%) where AUCs were reported, the mean AUC for Al
versus conventional methods were 0.79 (95% CI: 0.74-0.85) versus 0.61 (95% CI: 0.54-0.68),
respectively (p < .001). However, the good to excellent discriminative performance of Al methods
is unlikely to be replicated when used in clinical practice, because most studies had high risk of
bias due to missing data handling and outcome determination.

Conclusion: The use of Al appears to improve the accuracy of diagnostic and prognostic
prediction of VTE over conventional risk models; however, there was a high risk of bias observed
across studies. Future studies should focus on transparent reporting, external validation, and
clinical application of these models.

Keywords
artificial intelligence; prediction modeling; venous thromboembolism

1| INTRODUCTION

Venous thromboembolism (VTE) is a common vascular disease that is associated with
significant morbidity and mortality.1:2 In patients presenting with suspected VTE, accurate
and timely diagnosis is a prerequisite for appropriate medical intervention to prevent
debilitating outcomes. In addition, accurate prediction of future VTE can facilitate the risk—
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benefit consideration and allow for selection of high-risk patients who are most likely to
benefit from pharmacological thromboprophylaxis.

A number of clinical risk prediction models have been developed for the diagnosis

and prognostic prediction of VTE in various settings.3-6 The reported performance of

these models vary among population, baseline risks of VTE, and predictors included in

the models. Traditionally, clinical risk prediction models are derived using a regression-
based analysis, such as logistic regression and Cox regression, which result in several
shortcomings including the limitation to highly structured and curated predictor variables.
Artificial intelligence (Al) and machine learning modeling approaches have become
increasingly popular as alternatives for the development of prediction models. While these
approaches provide theoretical advantages, including more computational flexibility and
consistency,’ they remain susceptible to bias and are often hard to clinically interpret which
limits their application. Moreover, the predictive performance of these Al-based models has
not been consistently reported to perform better than conventional models.

Evidence for Al or machine learning-based models in the diagnosis and prognostic
prediction of VTE has been accumulating over the past few years. This study aims to
systematically review the performance of Al or machine learning-based models in the
diagnosis and prediction of VTE and compare their performance with conventional clinical
risk assessment models (RAMS) or regression-based models.

2| METHODS

The study protocol is registered on PROSPERO (CRD248869). Preferred Reporting Items
for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed.

2.1.| Data sources and search strategies

PubMed, MEDLINE, EMBASE, and Web of Science from inception to April 20, 2021
were queried. The following search terms were used: (“artificial intelligence” OR “machine
learning” OR “natural language processing™) AND (“venous thromboembolism” OR

“deep vein thrombosis” OR “venous thrombosis” OR “pulmonary embolism™). Language
restriction to English was applied. Result from the detailed searches are presented in the
Supporting Information Methods.

2.2.| Study selection

The eligible studies were original prospective or retrospective studies evaluating the
performance of Al-based models to diagnose or predict occurrence of VTE in adults, defined
as age = 18 years of age. Diagnostic predictions models predict the probability of VTE

in the presenting population, whereas prognostic prediction models predict the probability
of developing VTE in the future. Studies were required to report one of the following
outcomes: sensitivity, specificity, positive predictive value, negative predictive value, or area
under receiver operating curve (AUC). Non-original articles (such as reviews, commentaries,
or guidelines) and duplicated studies were excluded. Studies assessing natural language
processing (NLP) accuracy to detect VTE from radiological reports or medical records were
not included.
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2.3 | Data extraction

Two authors (Thita Chiasakul and Barbara D. Lam) independently extracted data from
included studies in duplicate using a standardized evidence table based on CHARMS
(critical appraisal and data extraction for systematic reviews of prediction modeling studies)
checklist.® Discrepancies were resolved by consensus or a third reviewer (Rushad Patell)
when necessary. The primary outcome was the diagnostic or prognostic performance of
Al-based clinical prediction models in VTE. The following data were collected: author,
year of publication, study design, study population, inclusion and exclusion criteria, number
of participants, Al model, the outcome being predicted, internal and external validation
method, discrimination and calibration performance measure, and percentage of missing
data.

2.4 | Risk of bias assessment

Methodological quality assessment was performed independently by two authors (Thita
Chiasakul and Barbara D Lam) using the PROBAST (Prediction model Risk of Bias
Assessment Tool).?10 The tool consisted of four key domains: participants, predictors,
outcomes, and analysis. Studies were categorized by their risk of bias as having low, high,
or unclear risk of bias. Any differences in quality rating were resolved by consensus or
adjudication by a third reviewer (Rushad Patell).

2.5]| Statistical analysis

Due to the substantial heterogeneity in terms of study population, types of data sources,
models, and outcomes of interest that were observed among the included studies, meta-
analyses for the point estimates for the overall model performance were not performed.
Narrative summary and descriptive statistics were used to describe the characteristics of
included studies and the model’s performance measures. Unpaired #test was performed to
compare the mean AUC from Al versus conventional methods (RAMs or logistic regression
models). In studies reporting multiple models, the models with highest reported AUC were
selected for analysis.

3| RESULTS

3.1| Study identification

The study was reported in accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) and TRIPOD guidelines. The PRISMA flow
diagram is shown in Figure 1. A total of 745 unique records were retrieved from the
literature search. After screening by title and abstract, 656 records were excluded. The
remaining 89 references underwent full-text review, 20 of which met eligibility criteria and
were included in the systematic review. Fourteen studies provided adequate data for a pooled
analysis. Collectively, these 14 studies included 249 111 patients.

3.2 | Study and patient characteristics of included studies

The characteristics of included studies are summarized in Tables 1 and 2. Of the 20
included studies, 13 were of prognostic prediction models-23 and 7 were of diagnostic
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prediction models.24-30 Among the 13 prognostic prediction models studies, the outcome
being predicted were first VTE (8 studies), post-operative VTE (4 studies), and recurrent
VTE (1 study). Among the seven diagnostic prediction model studies, the conditions being
predicted were pulmonary embolism (PE; four studies), deep vein thrombosis (DVT; one
study), arterial and venous thromboembolism (one study), and portal vein thrombaosis (one
study). The publication years ranged from 2004 to 2021. Studies that were included were
conducted in the United States (10 studies), Europe (6 studies), Asia (3 studies), and South
America (1 study). All studies were retrospective, with only one study reporting results
from prospective validation.1® The sample size ranged from 31 to 111 888 patients. The
study population included patients presenting with suspected VTE or first VTE, ambulatory
cancer patients, hospitalized medical patients, patients with anti-phospholipid syndrome, and
post-operative patients. Data sources were mostly medical records obtained from single or
multiple institutions, whereas two studies utilized data from an administrative database.1423
Methods of VTE outcome assessment were described in seven studies (35%); two studies
used ICD codes and five studies used standard imaging such as duplex ultrasound and
computed tomography pulmonary angiography.

3.3| Models of Al

The Al-based models included artificial neural network (six studies), support vector
machines (four studies), super learner ensemble (one study), Bayesian methods (one study),
genetic programming (one study), unspecified machine learning models (two studies), and
multiple machine learning models (including random forest, gradient boosting decision

tree, logistic regression, support vector machine, K-nearest neighbor, and Naive-Bayes;

five studies). Twelve studies (60%) reported both training and testing cohorts, with the
proportion of testing cohorts ranging from 10%—-30%. Predictor variables included clinical
and laboratory variables that varied among studies, ranging from 3 to 68 variables. Of the 20
studies included, internal validation was reported in 11 studies (55%) and external validation
was performed in 2 studies (10%). Methods of internal validation included bootstrapping,
cross-validation, and data splitting. Missing values were excluded in five studies, whereas
two studies utilized the predictive value imputation method by replacing missing values with
the average of the attribute observed in the training set. The remaining 13 studies (65%) did
not include their approach to missing data.

3.4 | Performance measures

The model discrimination and calibration performance measures are summarized in Table
1. Discrimination measures, reported as AUCSs or c-statistics, were described in 14 studies
(70%). Among these studies, confidence intervals were reported in only three studies. The
mean AUC for Al-based models compared to conventional models (including previously
published clinical prediction models and logistic regression models) were 0.79 (95% CI:
0.74-0.85) vs. 0.61 (95% CI: 0.54-0.68), respectively (p < .001, Figure 2). Calibration
performance measures investigated using calibration plots and the Hosmer—Lemeshow test
were reported in only three studies.
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Risk of bias assessment

Summary of the risk of bias assessment are shown in Figure 3. Most studies had high or
unclear risk of bias according to the PROBAST tool. The common sources of bias among
the included studies were absence of detailed descriptions of participant inclusion and
exclusion criteria, lack of reporting on the definitions, methods of assessment, and blinding
procedures for model predictors and outcome ascertainment, and lack of report on missing
data handling and details of model calibration.

DISCUSSION

In this systematic review, we identified 20 studies that evaluated the performance of Al-
based prediction models in the diagnostic and prognostic prediction of VTE. The use of

Al appears to provide superior discrimination performance than the conventional regression-
based models; however, there were a number of shortcomings identified.

The included studies were heterogenous; each model was aimed to predict VTE in

different medical contexts, such as predicting first VTE in an outpatient or inpatient

settings, predicting recurrence after the first VTE, or predicting VTE after different surgical
procedures. Thus, we did not summarize and compare the model performance across studies.
Moreover, many studies fell short in adequately describing the inclusion and exclusion
criteria of the study population. These details are paramount to understand the clinical utility
and appropriate application of prediction models.

Concerning issues in the modeling process were noticeable among the included studies.
The currently available studies of Al-based models mostly have high risks of bias.

Essential elements of the model development, validation, and evaluation method were often
omitted from the reports, hindering the appraisal of their performance, applicability, and
reproducibility. In some studies,11:17:26.27 sample sizes were limited, which may have led to
overfitting of models. The time span of prediction, defined as the period between predictor
assessment and outcomes, was not described in most studies, which also limits the clinical
applicability. Moreover, less than half of the studies reported the proportion of missing data
and how they were handled. Missing data introduces bias in the model development and
affects the validity of the model’s predictive performance.3!

Although most of the included studies reported good to excellent discriminative performance
(AUC ranging from 0.7 to 0.9), this accomplishment is unlikely to be replicated when used
in clinical practice, owing to the studies’ high risk of bias. Of the 20 included studies, only

2 studies performed external validation,16:24 which showed that the model’s performance in
the validation cohort was inferior to the derivation cohort. In addition, our review observed
significant gaps in the reporting of model’s calibration performance (presented as calibration
plot or Hosmer—Lemeshow test), which evaluates the ability of the model to accurately
estimate the risk of the outcome. Ideally, reliable prediction models should show strong
agreement between the predicted outcomes and the observed outcomes.32 A model can have
excellent discrimination but poor calibration, over- or under-estimating the individual’s risk
of outcome.33 The use of such a model would be misleading and can be detrimental in
clinical practice. Performing independent external validation and a rigorous evaluation of
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Al-based model performance is an important step before actual clinical implementation. One
advantage of the Al-based prediction models is their ability to undergo transfer learning,

a machine learning method whereby a pre-trained model can be adapted to different
populations and data set, making it more accurate and cost-effective.34

Of the 20 included studies, 8 studies reported the comparative performance of Al-based
models to conventional models in the same data set.13:14.18,20,22.24.25,29 | g]| ejght

studies, the intra-study comparison showed superior discriminatory performance of Al-based
models. We reported that the mean AUC of Al-based models was higher than that of
conventional models. Although this finding was not intended to be interpreted as overall
summarization of the performance of individual models, it demonstrates the potential for
integration of Al in the development of risk prediction models in VTE. A recent systematic
review and meta-analysis of Al approaches, including NLP, in the prediction and diagnosis
of VTE reported pooled sensitivity of 0.87 and pooled specificity of 0.96 in the testing data
set based on five studies.3® The heterogeneity was very high in this study (/# ranging from
93.6% to 99.4%), which was expected when combining studies with marked variation in
clinical settings and objectives. Our review excluded NLP studies, due to their differences in
purpose and characteristics from the machine learning models. In another systematic review
comparing the performance of machine learning to logistic regression in 71 studies across
various clinical domains, the AUCs of machine learning models were higher than those of
logistic regression only in studies with high risk of bias.3¢

Despite the endorsement of the TRIPOD checklist,3” inadequate reporting of published risk
prediction models have been observed in both Al- and non-Al-based clinical prediction
models.36:38:39 Similar to the studies included in our analysis, common elements that were
often omitted were the description of participants, sample size justification, definition of
predictors and outcomes, missing data handling, calibration performances, and external
validation. Al approaches in medicine include the more auditable algorithms, which are
typically more interpretable and rely heavily on human annotation to accurately label
features and outputs, and the more “black box™ models, such as neural networks, which

can be highly computationally complex and differ significantly from statistical techniques.
These models often rely on nonlinear relationships between predictors and outcomes.* In
depth comparisons of these methodologies and justifications of the approaches are important
details that were broadly lacking in studies included in this systematic review. This should
be a focus in future studies for clinical applications of Al including VTE management. Al
algorithms, particularly in supervised learning for prediction modeling, are vulnerable to
biases of their human designers.#! These biases can be challenging to identify or rectify, and
can be compounded by biases present in the datasets or the algorithm itself. It is important to
be aware of these potential biases, as the use of Al becomes increasingly common, in order
to improve the efficiency and accessibility of healthcare delivery.*?

Aside from the model’s performance, the clinical applicability of an Al-based prediction
model is dependent upon many other important factors, such as the availability of the
model’s algorithm and software, the ability for model updating, security assurance, and the
integration to clinical workflow.%3 There is an ongoing debate regarding the capacity of Al-
generated algorithms to be safeguarded under intellectual property laws. This controversy
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could potentially hinder developers from sharing their models with the public.44 Moreover,
after implementation, the impact of Al-based prediction models on clinical outcomes

and decision making need continued evaluation. Thrombotic disorders and anticoagulation
are the most commonly assessed domains in studies assessing electronic health record
integration and implementation of clinical prediction models, which has shown promising
impact on clinical outcomes.*® A retrospective study evaluating the influence of Al-based
clinical decision support system reported a 19% reduction in the rate of hospital-acquired
VTE after implementation. Unfortunately, the details of model development were not
reported in this study.#® Moving forward, such implementation data are crucial in order

to assess the applicability and impact of Al-based clinical prediction models in clinical care.

Despite the limitations, our review serves to provide a comprehensive overview of current
literature evaluating the use of Al in the prediction models in the area of VTE and highlights
the apparent inadequacy in the reporting of current studies. It is foreseeable that there will be
an exponential increase in the number of reports on Al-based VTE prediction models in the
upcoming decade. Our review identifies the current methodological and reporting challenges
and issues at this early stage, such that future studies can take caution to improve reporting
transparency and appraisability, ultimately leading to improved overall quality of evidence in
this area.

5| CONCLUSION

The use of Al-based models for diagnosis and prediction of VTE are increasing and might
potentially be an improvement compared to existing models. Adherence to the standard
reporting guidelines for clinical prediction models can increase the quality of future studies
evaluating Al-based prediction models in VTE. At this stage of evidence, it is premature

to incorporate Al-based models in routine clinical practice. Implementation of these models
require consideration of other important factors including ethical and legal compliance,
transparency, integration to clinical workflows, and continuous evaluation. Future studies
should focus on transparent reporting, external validation, and clinical application of these
models.
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Novelty Statements
What isthe new aspect of your work?

This is a systematic review of literature evaluating the performance of artificial
intelligence (Al)-based models in the diagnostic and prognostic prediction of venous
thromboembolism (VTE).

What isthe central finding of your work?

Although Al-based models may potentially have superior performance to conventional
models, current studies have high risks of bias and inadequate reporting of methods.

What is (or could be) the specific clinical relevance of your work?

Before the widespread clinical implementation of Al-based models for the prediction of
VTE risk, clinicians should be aware of the potential bias present in the current literature
and their applicability.
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Records identified through database searching

(n =1055)

(PubMed = 75, MEDLINE = 29, EMBASE = 772, Web of Science = 179)

Records after duplicates removed

(n = 745)

) (o )

Included

FIGURE 1.

Records screened
(n = 745)

Records excluded
(n = 656)

Full-text articles assessed
for eligibility
(n = 89)

Studies included in
qualitative synthesis
(n=20)

Full-text articles excluded, with reasons
(n =69)

49 Did not use Al-based models
12 Not studies of prediction models
5 Not a primary study
3 Did not assess VTE as outcomes

v

Studies included in
quantitative synthesis
(n=14)

PRISMA flow diagram.
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Scatter plot comparing the area under receiver operating curve (AUC) in Al-based models
compared to previous clinical risk assessment models (RAMs)/logistic regression models.
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